
International Journal of Theoretical Physics, Vol. 32, No. 9, 1993 

Nonordered Quantum Logic and 
Its YES-NO Representation 

M. Pavi~i~ 1 

Received April 20, 1993 

It is shown that an orthomodular lattice is an ortholattice in which a unique 
operation of bi-implication corresponds to the equality relation and that the 
ordering relation in the binary formulation of quantum logic as well as the 
operation of implication (conditional) in quantum logic are completely irrele- 
vant for their axiomatization. The soundness and completeness theorems for the 
corresponding algebraic unified quantum logic are proved. A proper semantics, 
i.e., a representation of quantum logic, is given by means of a new YES-NO 
relation which might enable a proof of the finite model property and the 
decidability of quantum logic. A statistical YES-NO physical interpretation of 
the quantum logical propositions is provided. 

1. I N T R O D U C T I O N  

Q u a n t u m  logic is considered to be a logic, a partially ordered set, a 
lattice, a probabilistic structure, a modal  s t r u c t u r e , . . . .  All these structures 
share one thing: the Hilbert space is their c o m m o n  model. Therefore they 
are not  really varieties of a basic Hilbertian structure, but only different 
techniques available in approaching quan tum measurements.  

The quan tum structures differ significantly from the classical ones 
and therefore it has repeatedly been questioned whether we can smoothly 
apply logical, probabilistic, lattice, and modal  techniques to quan tum 
measurements.  For,  in quan tum logic the distributivity, modulari ty,  the 
object language Modus  Ponens,  and other  classical "objectives" are lost, in 
quan tum probabil i ty theory the Ko lmogorov ian  axioms do not hold, etco 
The a t tempt  to overcome the differences by declaring logics and probabil i ty 
theories empirical did not  help much since that "move" could not  make 
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standard logical or probability methods any more applicable to quantum 
logic or to quantum probability theory. In fact, over the past 20 years we 
have been piling up more and more unanswered questions, and only by 
answering these questions can we decide whether we can effectively use 
logical, modal, or lattice techniques in elaborating quantum measurements. 

Some of questions are: 

1. Is there a unique object language operation which can take over the 
role of the unique classical operation of implication (conditional, 
set-theoretic inclusion)? 

2. Is the usual irreflexive and symmetric orthogonality relation 
appropriate for set-theoretic representation of quantum-theoretic 
measurements? Can such an orthogonality relation provide a 
relation of accessibility within the modal and Kripkean approach to 
quantum logic? 

3. Does quantum logic have the finite model property? 
4. Is quantum logic decidable? 

In this paper we answer the first two questions and obtain a novel 
representation of quantum logic and quantum measurements. 

Essentially, one of the obtained results makes the ordering within 
quantum sets irrelevant and substitutes the identity for the ordering rela- 
tion. This renders the usual techniques of logic as a deductive inferential 
theory inappropriate and ascribes quantum deductive logic a particular 
equational meaning. The result is obtained in Section 3. 

Another result enables a representation of quantum logic by means of 
an intransitive and symmetric YES-NO relation (instead of the projector- 
based irreflexive and symmetric orthogonality relation). This makes the 
usual modal, Kripkean, and imbedding approaches inapplicable since an 
intransitive relation does not correspond to any modal formula in the 
corresponding systems. In a word, the following opinion by Goldblatt 
(1984) turns out to be fully justified: "It is perhaps the first example of a 
natural and significant logic that leaves the usual methods defeated." The 
representation is presented in Section 4. 

In Section 5 we provide a physical interpretation of the YES-NO 
representation based on the statistics of measurements. 

2. LATTICE VERSUS LOGICAL APPROACH TO 
QUANTUM THEORY 

Before we dwell, in the next section, on the new results made possible 
by a departure from the usual techniques, we first present here some 
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previous recent results that stress particular points at which we have to 
start and which are mostly concerned with the following two aspects of 
lattices and logics. 

Lattices were formulated in order to describe the set-theoretic aspects 
of a theory of partially ordered sets with a supremum and infimum but so 
as to keep to the methods of the universal algebras. This was achieved by 
representing the supremum and infimum with the help of the object 
language operations of conjunction and disjunction. Partial ordering is 
then also representable by means -of such operations. 

Logics, on the other hand, serve to make empirical claims by means 
of set,theoretic predicates, to conclude from one statement (proposition) to 
another (i.e., to infer one from another) in a deductive way, and to model 
the obtained structure by lattices as their algebraic models (using classes of 
equivalence). Logicsalso rely on the operations of conjunction and disjunc- 
tion and in particular on the operation of implication (conditional), 
however, not to "algebraize" the logic, but to facilitate deduction and 
inference. The latter possibility stems from the fact that in classical logic a 
unique operation of implication corresponds to the relation of implication 
(ordering relation). Therefore, to invoke an operation of  implication is 
often considered unavoidable for a proper characterization of any deduc- 
tive theory. The modal semantics of the classical logic is but a further 
characterization of relations between classical "logico-empirical" deductive 
propositions. 

Thus, "these "techniques" (lattice and logical methods) are perfectly 
suited for a description of the classical phase space. But when we try to 
apply them to the Hilbert space we soon realize that we have to twist the 
techniques significantly if we want to force them to give us results. 

Quantum theory, to start with, generates five different conditionals 
(in the orthomodular lattice and logic) which reduce to the classical 
conditional when the propositions are commensurable. 

We have shown elsewhere (Pavi6i~, 1987) that the orthomodularity 
boils down to the equivalence of all five mentioned conditionals with the 
lattice-theoretic conditional (the relation of implication) and we also 
formulated (Pavi6i6, 1989, 1992) unified quantum logic which gives a 
common and unique axiomatization for all possible conditionals. 

Orthomodularity is thus reduced to a connection between object 
language implication and the model language ordering relation. The unified 
quantum logic then represents this connection as a connection between the 
two kinds of truths: the truth of a valuation and the object language 
defined truth. [Cf. R4--rule of inference from Pavi~i~ (1992).3 

Let us introduce the unified quantum logic in some detail. 
Its propositions are based on elementary propositions Po, Pl, P2 , . . -  
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and the following connectives: ~ (negation), ~ (implication), and 
(disjunction). 

The set of propositions Q~ is defined formally as follows: 

pj is a proposition for j = 0, 1, 2 . . . . .  
-7 A is  a proposition iff A is a proposition. 
A --* B is a proposition iff A and B are propositions. 
A v B is a proposition iff A and B are propositions. 

The conjunction is introduced by the following definition: A/x B d ~ f  
-7 (-7A V --nB). 

Our metalanguage consists of axiom schemata from the object 
language as elementary metapropositions and of compound metaproposi-  
tions built up by means of the following metaconnectives: ~ (not), & (and), 
v (or), ~ ( i f . . . ,  then), and <:> (tff), with the usual classical meaning. 

The bi-implication is defined as A ~-~ B =def (A ~ B) /x (B ~ A). 
We define unified quantum logic U Q L  as the axiom system 

given below. The sign ~- may be interpreted as "it is asserted in UQL."  
Connective --7 binds stronger and ~ weaker than v and A, and we shall 
occasionally omit brackets under the usual convention. To avoid a clumsy 
statement of the rule of substitution, we use axiom schemata instead of 
axioms and from now on whenever we mention axioms we mean axiom 
schemata. 

Axiom Schemata. 

A1. ~-A--*A 
A2. }-A-~ ~ T A  
A3. ~--7 --TA --+ A 
A4. ~-A--+A v B 
A5. ~ B - - * A  v B 
A6. }-B ~ A v ~ A  

Rules of Inference. 

R1. [ - A ~ B  & ~ - B ~ C  ~ ~ - A ~ C  
R2. ~ - A ~ B  ~ ~ - T B ~  ~ A  
R3. ~ - A o C  & ~ - B o C  ~ F - A v B - ~ C  
R4. [ - ( C v - - 7 C ) ~ ( A ~ B )  <:> }-A--* B 

The operation of implication A --* B is one of the following: 

A ~1  B d~r = - T A v  (A A B) (Mittelstaedt) 

A --*2 B a~=r B v (-TA A T B )  (Dishkant) 
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A --+3 B ~r ( ~ A  /x -qB) v ( ~ A  /x B) v ((-qA v B)/x A) 

A --+4 B ~r (A /x B) v (-qA /x B) v ( ( ~ A  v B)/x ~ B )  

A --+5 B d~ (A A B) v (mA /x B) v (mA /x roB) 

(Kalmbach) 

(non-tollens) 

(relevance) 

U Q L  without the rule R4 is an orthologic, also called minimal 
quantum logic. 

To prove that U Q L  is really quantum logic we have to prove that 
U Q L  has an or thomodular  lattice as a model. By the or thomodular  lattice 
we mean algebra L = {L ~ l ,  w, c~ } such that the following conditions are 
satisfied for any a, b, c~L~ 

L1. a w b = b w a  
L2. ( a w b ) w c = a w ( b w a )  
L3. a •  = a  
L4. a u ( b w b ~ ) = b u b  l 
L5. a w ( a c ~ b ) = a  
L6. a c ~ b = ( a • 1 7 7  l 
L7. a ~ i b = c ~ c  • ~ a<<,b ( i = 1  . . . . .  5) 

Here a<~b=defawb=b and a ~ i b  ( i =  l . . . . .  5) is defined in a way which 
is completely analogous to the aforegiven one in the logic. From now on 
we shall use the following notation: a u a= =derl  and a c~ a z =d~r 0. 
Of course, L is also orthocomplemented, since lattices with unique ortho- 
complements and or thomodular  lattices coincide (Rose, 1964). 

The algebra {L ~ • u ,  c~ } in which the conditions L1-L6 are satisfied 
is an ortholattice. 

The algebra {L ~ • w, c~ } in which L1-L6 hold and L7 is satisfied by 
a ~ b =d~r a •  b is a distributive lattice with 1 and 0 (Boolean algebra). 

That  L is really an orthomodular  lattice, i.e., that L7 can be used 
instead of the usual or thomodular  law a u b = ( ( a w b ) n b •  we 
prove d earlier (Pavi6i6, 1987, 1989). 

To prove that the lattice is a model for unified quantum logic we 
introduce the following definitions. 

Definition 2.1. We call ~ = {L, h } a model of the set QO if L is an 
orthomodular  lattice and if h: U Q L  ~ L is a morphism in L preserving the 
operations 7 ,  v ,  and ~ while turning them into L, u ,  and =i  
( i=  1 . . . . .  5), and satisfying h(A) = 1 for any A ~ QO for which [-A holds. 

Definition 2.2. We call a proposition A ~ Q~ true in the model Lf if 
for any morphism h: U Q L  ~ L, h(A)= 1 holds. 
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We prove the soundness of UQL for valid formulas from L by means 
of the following theorem. 

Soundness Theorem 2.1. ~-A only if A is true in any orthomodular 
model of UQL. 

Proof By analogy with the binary formulation of quantum logic 
(Pavi~i6, 1987; Goldblatt, 1974), it is obvious that A1 A6 hold true in 
any ~ ,  and that the statement is preserved by applications of R1-R3. 
Verification of R4 is also straightforward and we omit it. [] 

Some further theorems and formulas for the subsequent usage are given 
in Pavi~i6 (1989, 1992) along with the proofs of the following theorems. 

Theorem 2.2. Let UQLi denote UQL with ~ = - - %  i =  1 , . . . ,  5. 
Then in any UQLi  we can infer A1-A6 and R1-R4 for any -~j, j = 1, . . . ,  5. 

Theorem 2.3. UQL with A ~ B = A-~  B =def ~ A  v B is a classical 
logic. 

To prove the completeness of UQL for the class of valid formulas of 
L, we first define the relation - and prove some related lemmas. 

Definition 2.3. A =- B =_d~f ~-A ~ B, where ~-A ~ B means }-A 
B & ~-B--+A. 

Lemma 2.1. The relation - is a congruence relation on the algebra 
of propositions ~ = < Q~ -7, v ,  ~ >. 

Lemma 2.2. The Lindenbaum-Tarski algebra d / -  is an ortho- 
modular lattice, i.e., the conditions defining the lattice are true for 
~ / ~ ,  v / -=,  and ~ / -=  turning into • u ,  and =i by means of natural 
isomorphism k: d ~ ~ / -  which is induced by the congruence relation = 
and which satisfies k ( ~ A ) = E k ( A ) ]  1, k ( A v B ) = k ( A ) u k ( B ) ,  and 
k(A ~ B) = k(A) =i k(B). 

Completeness Theorem 2.4. If A is true in any model of UQL, then 
~-A. 

Proof The proof is an obvious modification of the analogous proof 
from Pavi~i6 (1989) and we omit it. [] 

Taken together, UQL is a proper quantum-logical deductive system so 
far as its algebraic semantics is concerned. 
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However, although UQL provides the same axiomatic frame for all 
five implications, it nevertheless splits into five different logics, as follows 
from the following theorem. 

Theorem 2.5. Any orthomodular lattice in which a = i b = a ~ j b  
(i, j =  1 . . . . .  5, i r j) is distributive. 

Proof The proof can be easily carried out for all cases by means of 
the commensurability condition: a c~ (a • w b) ~< b (Pavi6i6, 1987), which is, 
in effect, Foulis' condition [(iii) o f L e m m a  2 of Foulis (1962)] for Sasaki's 
permutability. Therefore, we shall only treat it for i = 1 and j = 2. 

We start with a • • (a c~ b) = b u (a • c~ b• Using lattice analogs to 
A1, R1, and R2, we obtain blc~(awb)<~a, which boils down to the 
commensurability of a and b. Since this holds for any a, b E L ~ we obtain 
the distributivity. 

In a similar way we proceed for any i, h = 1 . . . . .  5, i ~ j. �9 

Corollary 2.1. For commensurable elements a ~ i b = a ~ b = a •  
i = 1  . . . .  ,5. 

Since we cannot deal with five logics at once, e.g., already the proposi- 
tional ortho-Arguesian law (Greechie, 1981) forces us to make up our mind 
as to which conditional we should keep to, we shall now dwell on some 
new results which open a new approach to quantum logic or even more 
likely the other way round. 

3. ALGEBRAIC AXIOMATIZATION OF UNIFIED 
Q U A N T U M  LOGIC 

In the previous section we have shown how both quantum and classi- 
cal logics are characterized by ascribing at the same time the logical and 
the object language (--7 A v A) truth to the operation of implication within 
an orthologic. The particular feature of classical logic (as opposed to 
quantum logic) which is "responsible" for the success of its methods is that 
the ascription for the classical implication is unique. Equivalently, both 
orthomodular and distributive lattices are characterized by determining, in 
an ortholattice, the ordering relation with the help of the object language 
implications being equal to one. And again the particular feature of the 
Boolean algebra is that such a determination is unique as opposed to the 
orthomodular lattice. 

Our idea then was that for orthomodular logic the ordering is not at 
all so important. The idea proved right through the following theorems, 
which put equation in place of ordering inequation (relation of implication) 
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and identity (bi-implication, biconditional) in place of operation of 
implication (conditional). 

Definition 3.1. We call the expression (a ~i  b) c~ (b D i a) (i = 1 . . . . .  5) 
identity and denote it by a -  b. The two elements a, b satisfying a = b = 1 
we call identical. 

Definition 3.2. We call the expression (a ~ b) c~ (b ~ a) classical 
identity and denote it by a -=o b. The two elements a, b satisfying a =o b = 1 
we call classically identical. 

Lemma 3.1. In any orthomodular  lattice, a - b =  (ac~b)w (a • c~b• 

Proof We omit the easy proof. To our knowledge the lemma was 
first mentioned by Hardegree (1981). �9 

Lemma 3.2. In any ortholattice, a=_ob=(aJ-wb)c~(awb• 

Proof Obvious by definition. �9 

The main theorem of this section is the following one. It characterizes 
an or thomodular  lattice by means of the operation of identity and the 
lattice-theoretic equation instead of the operation of implication and the 
lattice-theoretic ordering. 

Theorem 3.1. An ortholattice in which any two identical elements 
are equal, i.e., in which 

L7'. a ~ b =  l ~ a = b  

holds, is an or thomodular  lattice and vice versa. 

Proof The vice versa part  follows directly from L7 and Defini- 
tion 3.1, since right to left metaequivalence holds in any ortholattice. So we 
have to prove the orthomodulari ty condition by means of L1-L6 and L7'. 
Let us take the following well-known form (Pavi~i6, 1987) of the 
orthomodularity: 

a<~b & b i w a = l  ~ b<~a 

The first premise can be written as a w b = b and as a n b = a. The former 
equation can be written, by using the lattice analog for R2, as b •  
a • c~b • Introducing these b ~ and a into the second premise, the latter 
reads (a•177 1. Now L7' gives a=b,  which is, in effect, the 
wanted conclusion. �9 
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This extraordinary feature of orthomodular lattices and therefore of 
quantum logic characterizes them in a similar way in which the ordering 
relation versus the operation of implication characterizes distributive lat- 
tices. In other words, the identity which makes two elements both identical 
and equal in an ortholattice, thus making the lattice orthomodular, is 
unique. We could prove this directly, but it is much nicer to prove instead 
that the classical identity which makes any two elements of an ortholattice 
both classically identical and equal does not turn the lattice into a 
distributive one, but makes it a lattice which is between being genuinely 
orthomodular and distributive. [That, by doing so, we at the same time 
prove the wanted uniqueness of the identity stems from the fact the there 
are only five implications in an orthomodular lattice, which reduce to the 
classical one for commensurable elements. To our knowledge Hardegree 
(1981) was first to observed that Kotas' (1967) theorem on the existence of 
exactly five (plus classical itself) such implications in any modular lattice 
is valid for orthomodular lattices as well. 2 It should be noticed at this point 
that in an ortholattice a~ ib=  1 & b ~ i a =  1 ( i=  1 . . . .  ,5)  is equivalent to 
( a ~ b ) c ~ ( b ~ i a ) = l  ( i = 1  . . . . .  5).] 

Theorem 3.2. An ortholattice in which any two classically identical 
elements are equal, i.e., in which 

L7". a - o b =  l ~ a=b 

holds, is a nongenuine orthomodular lattice which is not distributive. 

Proof We shall first prove that L7" implies L7'. 
Using a w (b c~ c) ~ (a u b) c~ (a u c), which holds in any ortholattice, 

we easily obtain that (ac~b)u(aic~b• implies ((a=c~b• 
( (a •177  Using aw(bc~e)<<.(aub)c~(auc) again for each 
conjunct of the latter equation, we easily obtain that it implies (a u b • c~ 
( b w a i ) = l .  Now L7" gives a=b. Thus (a•177 implies 
a = b. Hence L7'. 

Therefore, a lattice in which L1-L6 and L7" are satisfied is 
orthomodular. However, it is not a genuinely orthomodular, since L7 '~ 
violates most orthomodular lattices from MacLaren's Lfl0 to Chinese 
lantern M02. 

However, such a lattice is not distributive, because the distributivity 
would imply, by L7" and Theorem 2.3, the validity of the following 
theorem in classical logic: }-((A /x B) ~- (C/x D)) ~ (A --- C). Since this is 
obviously not a theorem in classical logic, we obtain the claim. �9 

2A more detailed proof of the validity of Kotas' theorem for orthomodular lattices can be 
found in Kalmbach (1983). 
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The previous theorems enable us to axiomatize unified quantum logic 
in a completely algebraic way, thus practically identifying quantum logic 
and its algebraical model-- the  orthomodular lattice. From this marriage 
orthomodular lattice gains the ease of inferring formulas and availability of 
different logical semantics such as, e.g., probabilistic semantics, thus 
becoming an algebraico-deductive system. Quantum logic, on the other 
hand, gains a new representation by means of equational algebraic set- 
theoretic properties. More details on all these aspects will be presented in 
the next section. Here we shall only present the axiomatization itself. The 
axiomatization is not intended to provide a vehicle for proving the old 
things in a new garment, but simply a novel fact on orthomodular struc- 
tures and quantum logic and a source for further new results. Therefore we 
shall next prove its soundness and completeness, but we will not burden 
the reader with the unfamiliar axioms when proving other results in the 
next section. 

We define algebraic unified quantum logic AUQL as the axiom system 
given below. 

Axiom Schemata. 

ALl. [-A v B~--* B v A 
AL2. ~ - A ~ A  a (A v B )  
AL3. }--A *--* A a (A v -TB) 
AL4. ~-(A v B) v C *--~ ~((- -7C A -7B) A -TA) 

Rule of Inference. 

RL1. ] - ( C v  -TC)*--~(A*--~B) ~ ~-A,--~B 

Here the bi-implication is defined as A *-*B= aer (-TA A ~ B )  v (A A B). 

Definition 3.3. We call S = <L, h> a model of the set Q~ (of 
propositions from AUQL) if L is an orthomodular lattice and if 
h: AUQL ~ L is a morphism in L preserving the operations 7 ,  v ,  and 
while turning them into ", ~, and - ,  and satisfying h (A)=  1 for any 
A e Q O for which F-A holds. 

Definition 3.4. We call a proposition A e Q~ true in the model 5 ~ if 
for any morphism h: AUQL ~--~ L, h (A)=  1 holds. 

Soundness Theorem 3.3. F-A only if A is true in any orthomodular 
model of AUQL. 

Proof  Sobociflski's (1975) postulate system for ortholattices, which 
we actually translated into the logic, would make our proofs of ALI-AL4 
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redundant. So we omit them. The proof of RL1 is straightforward with the 
help of Theorem 1 and we omit it as well. �9 

Lemma 3.3. The Lindenbaum-Tarski algebra ~4/~-~ is an ortho- 
modular lattice with the natural isomorphism k: ~4~-+d/~-* which is 
induced by the congruence relation ~-~ and which satisfies k(-TA)= 
[k(A)]=, k(A v B) = k (A)  w k(B), and k(A ~ B) = k (A)  =- k(B). 

Completeness Theorem 3.4. _If A is true in any model of AUQL, then 
~-A. 

Proof  The proof is straightforward and we omit it. �9 

Remark. As we already stressed above, algebraic unified quantum 
logic AUQL is not intended to substitute the usual axiomatization, but 
only to provide a distinguishing characterization of quantum logic by 
means of a unique operation--bi-implication--which directly stems from 
the operations of implication whose classical form--classical implication-- 
in turn serves for a unique characterization of classical logic. This new 
characterization will in the next section generate some further novel results, 
but in approaching them we shall retain the whole usual logical machinery, 
in particular Ackermann's binary formulation which Kotas applied to 
modular and Goldblatt to orthomodular logic, then MacLaren's set- 
theoretic characterization and Goldblatt's set-theoretic semantics, etc. The 
reason for that is twofold. First, the main appeal of the mentioned 
structures lies in the ease of deriving new formulas, checking on 
decidability, etc., and this ease is based on particular properties of the 
underlying orthostructure on which orthomodularity or distrihutivity can 
be built. For example, A2, A3, A6, and R2 express orthocomplementarity 
of an orthostructure and we know that (i) a uniquely orthocomplemented 
ortholattice is an orthomodular lattice (Rose, 1964; Fay, 1967) and (ii)a 
uniquely complemented ortholattice is a Boolean algebra (Fay, 1967; 
Birkhoff, 1967). (Greechie commented at the recent biannual meeting of 
the International Quantum Structures Association: "I've learned recently 
that in dealing with quantum structures we should always start from 
ortho-algebras.") Second, I simply could not stand the idea of forcing 
the reader--and myself--through another new axiomatization and 
formalism. 

4. YES-NO REPRESENTATION OF QUANTUM LOGIC 

Comparing the representations by means of the operations of implica- 
tion and bi-implication presented in Sections 2 and 3, respectively, we can 

902/32/9-2 
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easily come to a conjecture that other ordering-like quantum logic, 
concepts can be redefined along a similar line, eventually bringing us to a 
new modeling and proper semantics of quantum logic. 

The first concept we should check on is of course the orthogonality. 
We say that elements a and b of an ortholattice are orthogonal and we 
write a s b iff a~< b • This definition, which we can read off  from the 
algebra of projectors from the Hilbert space, is perfectly suited for a 
representation of orthologic and ortholattices proper (Goldblatt, 1984; 
Dishkant, 1972; Nishimura, 1980, 1993; Tamura, 1988). For, we can rather 
straightforwardly impose particular conditions on the orthogonality which 
give us the soundness as well as the completeness of the representation, the 
orthoframe, the canonical model, the finite model property, and the 
decidability. 

This is not so when we add the orthomodularity condition to 
orthologic (ortholattices), i.e., when we deal with quantum logic (the 
orthomodular lattices). It is then possible to represent the logic by means 
of conditions imposed on the frame, but not by means of the conditions of 
the first order imposed on the above orthogonality (which appears as the 
relation of accessibility in the Kripkean, i.e., modal approach) as proved by 
Goldblatt (1984). Thus it is still not known whether there is a class of 
orthoframes which determines the logic (Goldblatt, 1974; 1984; Minari, 
1987). 

However, we can approach the whole problem from the "equational 
side," picking up another relation which is not orthogonal but, let us say, 
orthogonal-like. 

The guideline for the new orthogonal-like relation is the equation 
a = b ~ instead of the inequation a ~< b ~. The new relation does not follow 
the algebra of projectors, but the algebra of YES-NO linear subspaces and 
their orthocomplements. It is given in a set-theoretic way and it is weaker 
than (i.e., it follows from) MacLaren's (1965) orthogonality. We shall call 
it the YES-NO relation, since it perfectly corresponds to YES-NO quantum 
experiments. 

Let us start by establishing our representation (semantics) by intro- 
ducing the YES-NO quantum frame and the YES-NO relation for algebraic 
unified quantum logic. 

Definition 4.1. ~ = (X, 0 ) is a YES-NO quantum frame iff X is a 
nonempty set, the carrier set of ~' ,  and Q is a YES-NO relation, i.e., 
G --~ X • X is symmetric and intransitive. 

Of course, the relation is also irreflexive since irreflexivity follows from 
intransitivity. 
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Definition 4.2. Y is said to be a YES-NO subset iff 

Y c _ Z c X  ~ ( V x e Z ) ( x ~ Y v  x @  Y) 

where x @ y=der (Vy ~ Y)(x O y). 

In a pedestrian way we can say that any element of a proper subset 
of the carrier set X either belongs to a subset of that subset or to its relative 
complement. To pick up a proper subset is important  because a direct 
reference to X would bring us to the Boolean algebra instead of ortho- 
modular  lattice. Thus we rely on the well-known representation of 
or thomodular  structures, by which they can be obtained by gluing together 
the Boolean algebras, the representation "initiated" by Greechie (1968) and 
nicely formulated by Dietz (1983): "An ortholattice is or thomodular  if and 
only if every its orthogonal subset lies in a maximal Boolean subalgebra (a 
block) of the lattice." 

Lemma 4.1. A YES NO subset Y c _ Z c X i s  YES-NO closed (in Z c X ) .  
If we denote y e  = {x :x  @ y, y e  Y}, then y e e  = y. 

Proof We have to prove 

(Vx e z ~ x ) [ ( x  e r=_ z )  v (3z ~ z ) ( ( z  | Y) & ~ (x | z))]  

If we assume x ~  Y, the expression is obviously true. Let us suppose 
x r Y. According to Definition 4.2 we have x O Y. Then for any z @ Y we 
have either z = x  and in this case the irreflexivity (deducible from the 
intransitivity) does the job or the intransitivity for any y e Y gives x @ y & 
z @ y ~  ~ ( x @ z ) .  

Let us now prove y e e  = y. By definition, we have y e  = {x: x ~ y, 
y e Y }  and y e e = ( Y e ) e = { z : z @ x ,  x e Y e } = { z : z @ x & x @ y } .  By 
intransitivity we get y e e =  {z: ~ e  @y,  y ~  Y} and this is nothing but Y 
by Definition 4.2. �9 

To prove the soundness of our representation, we introduce a YES-NO 
model by the following definition, which is actually a modified Goldblatt  
(1974) definition for the orthomodel reformulated for our YES-NO case. We 
do so in order to stress the parallelism between the models: the orthogonal 
one and the YES-NO one. 

Definition 4.3. dr = ( X, @, V) is a YES-NO quantum model on the 
YES-NO quantum frame (X, @ )  iff V is a function assigning to each 
propositional variable Pi a YES-NO subset V(pi)~ X. The truth of a wffA 
at x in J r  is defined recursively as follows. (J/g: x ~ A reads A holds at x 
in J{.) 
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(1) x b p, r x ~  V(p3 
(2) x ~ A A B  <* x ~ A  & x ~ B  
(3) x ~  YA ~ ( V y ) ( y ~ A  ~ x O y )  

If we denote the set {xeX: x ~ A} by IIAIb (or ]IAII~), the above reads: 

(1') IIp,II = V(p,) 
(2 ' )  LIA A BII = HAll a IIB]] 
(Y) I I - n A l l = { x : x |  IIAtl} 

If F is a nonempty set of wffs, then F implies A at x in rig; in symbols: 
~ :  x: F ~ A, iff (3B 6 F)(JCd: x ~ B ~ JH: x ~ A). F tilt-implies A, 
JY: F ~ A, iff F implies A at all x in Jg. If ~ is a YES NO quantum frame, 
F ~-implies A, ~:  F ~ A, iff JC{: F ~ A for all models J~ on ~-. If c~ is 
a class of frames, F cg-implies A, cg: F ~ A, iff ~ :  F ~ A for all o ~ e ~. If 
F =  {A v -hA}, then we may simply write ~ '  ~ A, ~ ~ A, etc., and speak 
of truth of A in Jet, ~-validity of A, etc. A class cs of YES-NO quantum 
frames is said to determine quantum logic (AUQL or UQL)  iff, for all A, 
BeQ ~ [-A~Bif fCg:A ~ B. 

Lemma 4.2. If ~/~ is a YES-NO model, then for any A, the set [IAll Jg 
is YE~NO closed. 

Proof For IlPi[I = V(pi), V(pi) is a YES-NO subset and the result 
holds by Lemma 1. 

Provided that it holds for IlAlb and ]lBIl, it holds for IIA A BH as well 
because the intersection of YES-NO subsets is obviously a YES-NO subset and 
therefore closed by Lemma 4.1. 

To achieve a general result by induction on the length of formulas the 
negation remains to be considered. Let us suppose xr IIAll. By Defini- 
tion 4.3 (3 and 3') we then obtain (3y)[y  ~ A & --,(x Q y)] .  Now, if 
J g : z  ~ -hA, we get y ~ A ~ z  Q y  and by symmetry and the assumed 
existence of y ~ A we get y O z. Thus (assuming y ~ A) we get y O II ~ AII 
and ~ ( x  O y). So II-qALI is YES-NO closed. �9 

Soundness Theorem for YES-NO Representation of Quantum Logic 4.1. 

~ - F ~ A  ~ :  F ~ A 

where cg is the class of all YES-NO quantum frames. 

Proof Let us first prove the derivability of U Q L axioms and rules of 
inference. 

A1. x ~ A ~ x  ~ A is a tautology. 
A2. x ~ A / x B ~ ( x ~ A & x ~ B ) ~ x ~ A .  
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A3. x ~ A / x B c c , ( x ~ A & x ~ B ) ~ x ~ B .  
A4. Let x ~ A. Then, if y ~ -qA, by Definition 3.3, y @ x, and by 

symmetry, x @ y, so that the same definition gives x ~ ~ -~ A. 
A5. L e t x ~ ~ A .  Then, y ~  ~A~x@y, i .e . ,y@llAI j~x@y.  

Since by Lemma 4.2 IrAII is Y~S-yO closed, we have x~  I[AIj, i.e., 
x ~ A .  

A6. x ~  A/x-qAo[(Vy)(y~ A ~ y @ x ) & x ~  A].Hencex@x, 
which is in contradiction with the irreflexivity of Q. Thus 
(Vx)(~x  ~ A /x -1A) and therefore (VB)(A /x 7 A  ~ B). 

R1. [ ( x ~ A ~ x ~ B ) & ( x ~ B ~ x ~ C ) ] ~ ( x ~ A ~ x ~ C ) .  
R2. Assuming x ~ A ~ x ~  B and x ~ A ~ x ~  C, we obtain 

x ~ A = > ( x ~ B & x ~  C ) , w h i c h g i v e s x ~ A ~ x ~ B A C .  
R3. SupposeCg:A~ B, andalsoJ/g:x~-TB. Then y ~  A ~ x @ y  

by Definition 4.2. A ~ B gives y ~ A ~ y  ~ B. Thus y ~ A 
xOy,  i.e.,x~ ~A. 

R4. We have to prove A /x ( ~ A  v (A /x B)) ~ B. Let us start with 
A /x B ~ A, which is a tautology. Hence for any ~ '  we have 
HA /x BII = IIA]J ~ IIBII ~-IIAtl by definition of ItAll "~. For yE  
IIA A BI[, IIA A BI] is YES NO closed. On the other hand, for y r 
IIA A BIt & y ~  IIAJl, according to Definition 4.2 there is at least 
one y such that y @ HA/~ BJ[ and by Lemma4.1, IIA A B[[ is 
YES-NO closed. Now, if x ~ A  /x ~ ( A  /x ~ (A  AB)),  then 
x e  flAIl and 

(Vy)[~y~IIAll v_ ( ~ y @  JlA/~ Nil) v x@y] 

The latter expression boils down to 

[(Vy)(y E IIAII)] ~ r ( ~ y ) ( ( y  @ IIA A BII ) & ~ x  @ y)) ]  

Thus for all y e [JAIl there is no one satisfying the second alter- 
native of the YES-NO closure condition and therefore the first one: 
x e  I[A /x B][. Thus x ~ A /x B and hence the orthomodularity. 

The proof of the theorem follows by induction on UQL (AUQL) 
derivability. [] 

Thus we obtained that quantum logic really does have a YES-NO 
representation, i.e., a YES-NO model which is of our primary interest here. 
We are also able to prove the opposite, i.e., that the structure of which the 
YES-NO representation is a model is exactly quantum logic (UQL, AUQL), 
but for the proof we refer the reader to Pavi~i6 (1993a). This is mostly 
because the result is somewhat less interesting for possible physical applica- 
tions and for a reconstruction of the Hilbert space, as we clarify below. 
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Completeness Theorem for Quantum Logic 4.2. We have 

Cg:F ~ A ~ [ - F ~ A  

where ~g is the class of all YES-yO quantum frames. 

The completeness might provide the prospects for the finite model 
property and decidability of quantum logic [which are both--under par- 
ticular restrictions--also discussed in Pavi~i6 (1993a)]. 

Decidability boils down to the fact that there is an effective procedure 
to decide on every non-thesis that it really is a non-thesis and this is very 
important for any axiomatization because it decides on whether the 
axiomatization is effective in the sense that it is recursive. The reason why 
the obtained decidability and the finite model property of quantum logic 
are not so important for physical applications and the Hilbert space in the 
present elaboration is the following. Our completeness proof--as opposed 
to other completeness proofs (given for another representation--by means 
of the orthogonality) by MacLaren (1964), Goldblatt (1974), Dishkant 
(1977), Morgan (1983), Iturrioz (1982, 1986), Nishimura (1980, 1993), 
� 9  provide a proof of the finite model property and the decidability, 
but, on the other hand, they both turn out to be valid only for the finite 
case, i.e., for the case when there are finitely many elementary propositions 
in the logic. However, a finite propositional lattice (complete orthomodular 
one of the Jauch-Piron type, i.e., atomistic with the covering property) 
does not have the Hilbert space as a model, i.e., cannot serve for building 
up quantum mechanics on it. 3 Thus we have to approach a possible 
physical interpretation from another side and we will do so in the next 
section. 

5. YES-NO PHYSICAL INTERPRETATION OF 
QUANTUM LOGIC 

AS a pedestrian example of a physical interpretation of quantum logic 
we take the simplest possible experimental situation of measuring spin 1 by 
a Stern-Gerlach device. Within such an experiment, for example, by open- 
ing one channel and blocking the other two on the device we test a 
proposition (A in the logic, i.e., a in the lattice) (e.g., "spin up"), while by 
blocking the one and opening the other two we test its orthocomplement 
(-qA, a• This is nicely presented and shown in Figs. 1 and 2 of Hultgren 
and Shimony (1977). 

3Actually, only the infinite number of propositions in a Hilbertian lattice saves the result of 
Benedetti and Teppati (1971) which holds that such a system is undecidable. 
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That such an oversimplified experimental setup can at all be relevant 
for a general physical interpretation stems from the nature of the inter- 
pretation and the kind of meaning we ascribe to propositions. 

The analysis of Hultgren and Shimony (1977) of the spin-1 case 
showed that in building a complete Hilbert space edifice we cannot rely 
only on standard outcomes of the experiments carried out on individual 
systems. For, we cannot measure all the states we can describe with the 
help of the Hilbert space formalism by means of standard individual 
YES-NO measurements, i.e., there are states which are not eigenstates of the 
observables we measure. For  example, if we decide to orient the measuring 
device in direction n in order to measure the spin components of the spin 
operator s whose eigenvectors are [1, 0, 0], [0, 1, 0], and [0, 0, 1], then 
the state [ l /x /6 ,  l/x/-3, 1/.,/2] can easily be shown not to be an eigenstate 
of the measured operator n .s .  (We cannot obtain it by applying the 
rotation matrix on the eigenvectors.) 

A possible remedy for such unrepresentable states (i.e., the states out- 
side the logic or lattice of standard propositions) seems to be the disputed 
Jaueh infinite filter procedure for introducing conjunctions (meets, intersec- 
tions) which cannot be measured directly (either within a single experiment 
or within a finite number of them) as new elements of the logic (lattice) 
needed for modeling by the Hilbert space (Hultgren and Shimony, 1977; 
Shimony, 1971). In other words, there are infinitely many atoms of the 
lattice of the subspaces of the Hilbert space which do not belong to the 
finite lattice of individual Y~S-NO spin-1 measurements but which can be 
recovered by the Jauch's procedure. This is not a problem for quantum 
logic if we look at it as at a structure which corresponds to the Hilbert 
space because the structure (complete uniquely orthocomplemented 4 
atomistic lattice satisfying the covering law) demands by itself an infinite 
number of atoms (Ivert and Sj6din, 1978). But if we looked at quantum 
log!c as a logic of YES-NO discrete measurements and try to recover the 
Hilbert space axioms by empirically plausible assumptions, then we would 
obviously try to avoid any infinitary 5 procedure which, like Jauch's, in 
principle simply cannot be substituted by any arbitrarily long one 
(Shimony, 1971). Can one offer anything as a substitute for the Jauch's 
infinitary procedure? 

The infinitary Jauch procedure allows us to obtain the complete 
Hilbertian structure which bare experimental propositions obtained from a 
standard experimental setup simply cannot offer--as shown by Hultgren 

4Uniquely orthocomplemented lattices are orthomodular (Rose, 1964). 
5We coined the word infinitary to mean "incapable of being completed in a finite number of 
steps" by merging the words infinite and finitary. 
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and Shimony (1977). However, Swift and Wright (1980) have shown- -  
answering a challenge put forward by Hultgren and Shimony-- tha t  we can 
extend the standard experimental setup for measuring spins so as to make 
every Hermitian operator acting on the Hilbert space of spin-s particle 
measurable. In particular, they employed electric fields in place of magnetic 
ones, thus making electric k-poles (in the spin-1 case: quadrupoles) 
distinguishable. As a result one can offer a complete experimental setup for 
measuring every spin operator which is both finitary and repeatable, i.e., 
applicable to individual systems and which offers a complete set of elemen- 
tary propositions. On the other hand, we can deal not with individual 
systems, but with ensembles and represent states of the disputed kind 
([-l/x/6, l /x/3,  l / x / 2 ] )  as d 'Espagnat 's  mixtures of the second kind. 6 These 
possibilities immediately address the question of approaching the 
preparation-detection YES-NO procedure. Are we to take the individual or 
the ensemble approach? 

If we adopt the individual approach, then we bring the old Bohr 
"completeness solution" to the stage. That  is, given the whole experimental 
arrangement, we can always make an individual system determined by a 
discrete observable repeatable. But in that case we cannot apply the usual 
policy of standard quantum logicians and claim with them that the system 
itself is determined by its preparation, i.e., that it possesses a corresponding 
property which we unambiguously recover by a detection procedure. For, 
only by referring to the whole experimental procedure--prepara t ion  as well 
as detect ion--can we say that a system itself "possesses" a projection-O of 
spin-1 property when prepared by a magnetic field as opposed to an electric 
field. The system prepared one way or the other will pass the middle chan- 
nel of a detecting device no matter  whether that channel used a magnetic 
or an electric field to detect the state (Swift and Wright, 1980). Since the 
electrical field is capable of disguising the quadrupole moment  while the 
magnetic field can detect only dipole moments, the probability one (p = 1 ) 
of passing a particular filter, i.e., the repeatability, therefore does not 
have a sense without a reference to the whole preparation-detection 
procedure and the whole experimental setup: without knowing the ortho- 
complemention, we cannot say to which set the measured observable 
belongs. 

6D'Espagnat (1966, 1984) introduced the mixture of the second kind (improper mixtures) in 
order to take into account the mixturelike data as well as the correlations of the separated 
subsystems of Bell-like systems. In our case we deal with the spin detections and the correla- 
tions with the spins prepared along some other directions. Since the correlations boil down 
to the same diagonal elements of the rotation matrix (Pavi~i6, 1990c), formally both 
approaches coincide. 
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If we adopt the ensemble approach, we can apply the statistical 
approach to the definition of our propositions within the logic we use. In 
the above example, all channels taken into account within a long run 
unambiguously decide between dipoles and quadrupoles, provided that the 
ensemble is prepared in a "clean" way and not as a mixture. If it is 
prepared as a mixture, it will also be unambiguously detected as such. 

One can show that the statistical approach is not weaker then the 
individual approach, but is rival with it (Pavi6i6, 1990a-c, 1993b). 7 This is 
not in any contradiction with the usual approach to quantum logic, since 
a proposition can be as legally verifiable on a single repeatable individual 
system as well as on a beam coming out of a repeatable experimental 
arrangement: we just have to postulate whether "it is" one way or the other. 
Since that is often misunderstood 8 in the literature, we shall provide some 
details here. 

Let us take repeatability as a "measure" of individual as opposed to 
statistical interpretation. 

In order to verify whether an individual observed system is in the state 
[l/x/-6, 1/,,f13, l /x /2  ] or in a completely unprepared state [ 1 x/J,  1 ~,f3, 

1 ~ ]  we have to measure not only its beam, but also the beams of its 
orthocomplement, i.e., both statistical "properties" in the long run. No 
such mixture property can be encoded into an individual spin-1 particle. 
Thus we cannot speak of the repeatability of such systems. On the other 
hand, continuous observables (Ozawa, 1984) and discrete observables 
which do not commute with conserved quantities (Araki and Yanase, 
1960) are both known not to satisfy the repeatability hypothesis. So, for 
such observables no property can be prepared with certainty. 

Apparently, these unrepeatable systems behave differently than the 
ones characterized by discrete observables. 

But there is a way to treat all the observables, continuous as well as 
discrete, in a common way. Of course, we cannot make mixtures 
repeatable, but we can exclude the repeatability for individual events--  
leaving only the statistical repeatability which turns into the approximate 
repeatability for continuous observables. In other words, we can exclude 
the individual repeatability even for the discrete observables which undergo 
measurements of the first kind. In doing so we start with links between 
propositions and data. 

The only way in which quantum theory connects the "elements of the 
physical reality" (i.e., what we observe) with their "counterparts in the 

7jammer (1974) and Ballentine (1970) seem to hold an opposite view according to which the 
individual interpretation is contained in the statistical. 

8Reference 32 draws the reader's attention to some such "sources." 
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theory" (Einstein et al., 1935) is by means of the Born formula, which gives 
us the probability that the outcome of an experiment will confirm an 
observable or a property of an ensemble of systems (von Neumann, 1955). 
Strictly speaking, what we measure is the mean value of an operator, the 
scalar product, not the operator, not the state, not the wavefunction. When 
we say that a measurements yields the eigenvalue a or the state [Oa) this 
is "slang." We can measure neither A nor BOa ) nor a. What a measurement 
of the pure state I~) yields is (qJ~l A I~)/(~0~ i ~'~} which is then equal 
to a. 

In other words, in the case of discrete observables we say that we are 
able to prepare a property whenever by an appropriate detection (deter- 
mination, measurement), we can verify the property with certainty--i.e. 
with probability one/equal to unity (yon Neumann, 1955, p. 439; Einstein 
et al., 1935, p. 777), i.e., almost certainly, almost sure (yon Neumann, 1955, 
pp. 250, 439), or "except on a null-event" (Chow and Teicher, 1978, p. 20). 
This means that for repeatable measurements we only know that a 
property will be verified with certainty (with probability one)- - tha t  is, on 
ensemble. Whether the property will be verified on each so prepared 
individual system we can only guess. For, there is no "counterpart in the 
theory" of an individual detection even if it is carried out "with certainty": 
The Born probabilistic formula--which is the only link between the theory 
and measurements--refers only to ensembles. However, as shown below, 
we can consistently postulate whether a measurement of the first order is 
verifying a prepared repeatable property on each system or not. 

The approach we take rests on combining the Malus angle (between 
the preparing and the detecting Stern-Gerlach devices) expressed by 
probability with the Malus angle expressed by relative frequency. To 
connect probability 0 < p < 1 with the corresponding relative frequency we 
use the strong law of large numbers for the infinite number of Bernoulli 
trials which--being independent and exchangeable--perfectly represent 
quantum measurements on individual quantum systems. We used these 
properties of the individual quantum measurements to reduce their 
repeatability to successive measurements, but that has no influence on the 
whole argumentation, which rests exclusively on the fact that finitely many 
experiments out of infinitely many of them may be assumed to fail and to 
nevertheless build up to probability one. 

The argument supporting the statistical interpretation is that proba- 
bility one of e.g., electrons passing perfectly aligned Stern-Gerlach devices 
does imply that the relative frequency N+/N of the number N+ of detections 
of the prepared property (e.g., spin up) on the systems among the total 
number N of the prepared systems approaches probability p = ~ N + / N )  = 1 
almost certainly: 
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but does not imply that N+ analytically equals N, i.e., it does not 
necessarily follow that the analytical equation N+ = N should be satisfied. 

We therefore must postulate what we want: either N+ = N and (1) or 
N+ v~ N and (1). We have to stress here that since already the central limit 
theorem itself, which allowed us to infer (1), holds only on the open inter- 
val 0 < p < 1, it would be inconsistent to try to prove one or the other 
possibility. 

Of course, the possibility N+ :~N does not seem very plausible by 
itself and we therefore used the Malus law to construct the function which 
reflects the two possibilities and proved a theorem which directly supports 
another difference between the probability and frequency treatments of 
individual quantum measurements. 

As for the theorem, we proved that 

lim P ( ~ - ~ = p ~ = O ,  0 < p < l  (2) 
\ J r  / 

which expresses randomness of individual results as clustering only around 
p (almost never strictly at p). 

As for the function which reflects the two above-stated possibilities, we 
will just briefly sketch it here. The reader can find all the relevant theorems 
and proofs in Pavi6i6 (1990a), a generalization to spin-s case in Pavi6i6 
(1990c), and a discussion with possible implications on the algebraic struc- 
ture underlying quantum theory in Pavi6i6 (1990a, 1992, 1993b). The 
function refers to the quantum Malus law and reads 

G(p) d~J L-1N~c~lim [ a ( - ~ ) - - a ( p ) N  '/2] 
where ~ is the angle at which the detection device (a Stern-Gerlach device 
for spin-s particles, an analyzer for photons) is deflected with regard to the 
preparation device (another Stern-Gerlach device, polarizer) and where L 
is a bounded random (stochastic) variable: 0 < L < m. The function is well 
defined and continuous (or piecewise continuous) on the open interval 
(0, 1). In general it does not correspond to an operator, but it does repre- 
sent a property in the sense of von Neumann (1955). For electrons and for 
projection 0 of spin l, it is equal to (Pavi~i6, 1990a) 

sin 
G(p) = H(p) ~f H ip (a ) ]  = . 

s i n  
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Turning our attention to the probability equal to one, we see (Pavi~i6, 
1990a) from the definition of H(p) that H is not defined for the probability 
equal to one: H ( 1 ) =  0/0. However, its limit exists and equals 1. Thus a 
continuous extension H of H to [0, 1 ] exists and is given b y / t ( p )  = 1 for 
p c  (0, 1) and / t ( 1 ) =  1. 

We now assume that L is bounded and positive not only for 0 < p < 1, 
but for 0 ~< p ~< 1 as well (Pavi6i6, 1993b). 

Thus we are left with the following three possibilities [which hold for 
an arbitrary spin s, too (Pavi6i6, 1990c)]. 

1. G(p) is continuous at 1. A necessary and sufficient condition for 
this is G(1)=limp~lG(p). In this case we cannot strictly have 
N+ = N, since then G(1 ) = 0 # limp ~ 1 G(p) yields a contradiction. 

2. G(1) is undefined. In this case we also cannot have N+ = N, since 
the latter equation makes G(1) defined, i.e., equal to zero. 

3. G(1)- -0 .  In this case we must have N+ = N .  And vice versa: if the 
latter equation holds, we get G(1 )=  0. 

Hence, under the given assumptions a measurement of a discrete 
observable can be considered repeatable with respect to individual 
measured systems if and only if G(p) exhibits a jump discontinuity for 
p = 1 in the sense of point 3 above. 

The interpretative differences between the points are as follows. 
Possibilities 1 and 2 admit only the statistical interpretation of the 

quantum formalism and banish the repeatable measurements on individual 
systems from quantum mechanics altogether. Of course, the repeatability in 
the statistical sense remains untouched. Possibility 1 seems to be more 
plausible than possibility 2 because the assumed continuity of G makes it 
approach its classical value for large spins (Pavi6i6, 1990c). Notably, for a 
classical probability we have limp ~ 1 Gcl(p) = 0 and for "large spins" we get 
lira, _~ co limp ~ 1 G(p) = O. 

Possibility 3 admits the individual interpretation of the quantum for- 
malism and assumes that the repeatability in the statistical sense implies 
the repeatability in the individual sense. By adopting this interpretation we 
cannot but assume that nature differentiates open intervals from closed 
ones, i.e., distinguishes between two infinitely close points. [We would have 
to draw the same conclusion about nature if we assumed a sudden jump in 
definition of the random function L leaving G(1) undefined.] 

The main consequence of such formally different descriptions of quan- 
tum systems is therefore that the interpretations become rivals to each 
other. And the old problem as to whether an individual quantum system 
can be considered completely described by the standard formalism or not 
is given a new aspect: We are forced to make up our mind: either to 
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consider the s tandard formalism a complete description of an individual 
quan tum system or to unders tand it as a completely statistical theory. 

By keeping to the latter possibility we introduce all the logico-algebraic 
proposi t ions of  the structure (logic, l a t t i ce , . . . )  underlying the Hilbertian 
theory of quan tum measurements  directly as d 'Espagnat ' s  mixtures of the 
second k ind - -wh ich  cannot  be verified on individual systems but can on 
the appropr ia te  ensemble - -and  thus we avoid the aforementioned 
infinitary procedure,  which actually boils down to postulating what  we lack 
to reach the Hilbertian structure. 9 

We have to stress here that by avoiding Jauch 's  infinitary procedure 
we did not  get rid of any postulation. We only substituted the statistical 
interpretat ion postulate for the individual interpretation postulate and 
Jauch 's  infinitary postulate. We did so because we feel that  the former 
postulat ion is physically more  plausible since it fits better into the quan tum 
logic approach  and resolves the paradoxes of Hul tgren and Shimony 1~ by 
generating all the proposi t ions according to a feasible experimental recipe. 

6. C O N C L U S I O N S  

We have shown that  the logicoalgebraic structure underlying quan tum 
measurements  and having the Hilbert space as its model  can be based on 
the statistics of  the measurements.  The proposi t ions in such logic/lattice are 
formed with the help of ensembles, by means of d 'Espagnat ' s  mixtures of 
the second kind, which correspond to a complete experimental setup for 
measuring every spin operator.  The YES-NO setup is thus interpreted as the 
one which determines both a proposi t ion and its or thocomplement  in the 
long run. 

9The reason why Hultgren and Shimony (1977) could not reproduce all propositions is 
exactly that they kept to pure states and redefined propositions which could not be verified 
on individual systems, i.e., within single experiments: "The most interesting entries are those 
such that [meets in our lattice] ~ [meet in the Hilbertian lattice1. In several cases is [meet 
in our lattice] = ~ ,  whereas [meet in Hilbertian lattice] ~ ~ ,  since the intersection of two 
two-dimensional subspaces of a three-dimensional Hilbert space is a subspace of dimension 
at least one (a ray), but this ray may not be spanned by an eigenvector of n- s for any n and 
hence may not correspond to a verifiable proposition. So then the g.l.b, of [-two such proposi- 
tions] is in [our lattice1 ~"  (Hultgren and Shimony, 1977, p. 387). If they allowed 
d'Espagnat's mixtures of the second kind they could easily represent, e.g., the state [1/~/6, 
l/x/3, 1/,,/21 as a mixture of the second kind of [1, 0, 01, [0, 1, 0], and [0, 0, 11. 

1~ "paradoxes" presented by Hultgren and Shimony (1977) (although this is most 
probably not an adequate name) we mean their results according to which: (1)not all 
propositions can be generated within the standard spin measurements (the usual magnetic 
field only); (2) the covering property is not satisfied by propositions corresponding to such 
measurements; (3) propositions corresponding to such measurements form an orthomodular 
instead of a modular structure. 
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Quantum logic, whose propositions can therefore be generated by the 
YES-NO statistical measurements, is then shown to reflect the nature of the 
measurement so as to allow modeling by an ortholattice in which a unique 
operation of bi-implication corresponds to equality. In other words, the 
ordering relation turns out to be inessential for orthomodular lattices-- 
quite the other way round from distributive lattices, the result provided in 
Section 3. We could even say that quantum structures are based on equal 
classes of equivalence, while classical structures are based on ordered 
classes of equivalence. 

Such an approach gave us a clue to a representation of quantum logic 
as well as of orthomodular lattices by means of the YES-NO relation which 
we provided in Section 4. At the same time this embodies a proper seman- 
tics for quantum logic which is a rather long wanted result for the finite 
case, since the decidability which the result might enable establishes a 
direct computational approach to quantum measurements, although it is 
not of particular significance for the Hilbertian modeling. 

The fact that orthomodular lattice's are characterized by the operation 
of bi-implication might be significant for a complete axiomatization of 
quantum set theory because it does not seem accidental that Takeuti (1981) 
simply dropped the extensionality axiom out of his formulation of quantum 
set theory--the extensionality axiom demands a proper operation of 
bi-implication. 

On the other hand, the fact that orthomodular lattices are essentially 
not characterized by the operation of implication, i.e., that they are essen- 
tially nonordered, might be significant for a possible formulation of the 
Hilbert space over the non-Archimedean, i.e., nonordered, Keller fields 
(Keller, 1980; Gross, 1990; Gross and Kiinzi, 1985). 
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